THE CONE CONTRAST TEST:
Normative Scores for
Binocular Testing

LYNDA K. VU, MD, MPH
Col, USAF, MC, FS

USAF School of Aerospace Medicine
WPAFB, OH
RAM 2013
Disclosure Information
84th Annual Scientific Meeting
Dr. Lynda K. Vu

I have no financial relationships to disclose.

I will not discuss off-label use and/or investigational use in my presentation.
Acknowledgements

• USAFSAM Aeromedical Consultation Service- Ophthalmology Branch
 • Dr. Steve Wright
 • Dr. Jeff Rabin
 • Col (Dr.) John Gooch, Chief

• Mr. Jared Haynes, Statistician
• Mr. Mark Kinchen, Statistician
Outline

• Purpose
• Background
• Literature Review
• Methods
• Findings
• Discussion
• Recommendations
• References
Background

• Cone Contrast Test (CCT)
 • Primary color vision screening for US Air Force aviators and aviator applicants
 • Computer-based test using color and contrast
 • Selectively stimulates each of the three cone types (red, green, and blue) in the retina
 • Letters presented on a gray background decreasing in contrast until a threshold is reached
 • The USAF administers the test monocularly
 • Passing score is 75 or above for each eye
Cone Contrast Test

<table>
<thead>
<tr>
<th>Score</th>
<th>L Cone</th>
<th>M Cone</th>
<th>S Cone</th>
<th>L, M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>V</td>
<td>Z</td>
<td>N</td>
<td>F</td>
<td>E</td>
</tr>
<tr>
<td>20</td>
<td>F</td>
<td>V</td>
<td>Z</td>
<td>U</td>
<td>N</td>
</tr>
<tr>
<td>30</td>
<td>R</td>
<td>P</td>
<td>E</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>40</td>
<td>Z</td>
<td>E</td>
<td>N</td>
<td>P</td>
<td>Z</td>
</tr>
<tr>
<td>50</td>
<td>H</td>
<td>R</td>
<td>E</td>
<td>D</td>
<td>R</td>
</tr>
<tr>
<td>60</td>
<td>D</td>
<td>R</td>
<td>H</td>
<td>N</td>
<td>Z</td>
</tr>
<tr>
<td>70</td>
<td>N</td>
<td>Z</td>
<td>D</td>
<td>U</td>
<td>E</td>
</tr>
<tr>
<td>80</td>
<td>I</td>
<td>F</td>
<td>E</td>
<td>H</td>
<td>V</td>
</tr>
<tr>
<td>90</td>
<td>G</td>
<td>R</td>
<td>I</td>
<td>H</td>
<td>F</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Letters seen only by red, green or blue cones.

- **Severe** Color deficiency
- **Mild** Color deficiency
- **Normal color vision**

Higher the score, the better the color vision.

- Red CVD fails red test, Green CVD fails green.
Purpose & Hypothesis

• **Purpose:** Establish normative occupational values for the CCT when administered under binocular conditions.

• **Hypothesis:** Monocular CCT pass/fail values can not be used for binocular test administration. Binocular normative values are expected to be higher than monocular values.
Literature Review

- **Binocular viewing enhances visual function**
 - Previous study showed mean binocular CCT score increased 38% above monocular CCT (Rabin, et al)
 - Binocular occupational task performance improved 20.4% to 29.5% (Sheedy, et al)
- **Color vision tests are designed and validated for specific viewing conditions (binocular vs. monocular)**
Color Vision Tests

Monocular
- Nagel Anomaloscope (Gold standard for color vision testing)
- Pseudoisochromatic Plates (PIP1 and PIP2)
- CCT

Binocular
- Colour Assessment and Diagnosis (CAD) Test
- Computerized Color Vision Test (CCVT)
- PAPI Signal Light Test
- Aviation Lights Test
Methods

- Retrospective study using data obtained from the USAF Aeromedical Consultation Service Ophthalmology Branch
- Ensured best visual acuity for each subject (20/20)
- 142 subjects tested under monocular and binocular conditions
 - 111 Color Vision Normal (CVN) and 31 congenital (red/green) Color Vision Deficient (CVD) subjects included
 - Score based on average of right/left scores for monocular test and average of 2 binocular test trials
- Anomaloscope used to confirm CVD subjects
Results: Color Vision Normal

<table>
<thead>
<tr>
<th></th>
<th>Monocular</th>
<th>Binocular</th>
<th>% increase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Red Cone</td>
<td>Green Cone</td>
<td>Red Cone</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>97.95 (4.37)</td>
<td>97.5 (3.84)</td>
<td>99.89 (0.62)</td>
</tr>
<tr>
<td>Minimum</td>
<td>65</td>
<td>77.5</td>
<td>95</td>
</tr>
<tr>
<td>Maximum</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>95% CI</td>
<td>97.13-98.32</td>
<td>96.78 - 98.22</td>
<td>99.77 - 100.01</td>
</tr>
</tbody>
</table>

n = 111 subjects

* p < 0.001 vs. monocular score (Wilcoxon Signed Rank Test)
** Ceiling effect
Results: Color Vision Deficient

<table>
<thead>
<tr>
<th></th>
<th>Monocular</th>
<th>Binocular</th>
<th>% increase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Protan (Red Cone)</td>
<td>Deutan (Green Cone)</td>
<td>Protan (Red Cone)</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>30.42 (25.17)</td>
<td>56.60 (9.68)</td>
<td>47.90 *</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>35</td>
<td>22.5</td>
</tr>
<tr>
<td>Maximum</td>
<td>60</td>
<td>72.5</td>
<td>65</td>
</tr>
<tr>
<td>95% CI</td>
<td>4.01 - 56.83</td>
<td>52.60 - 60.60</td>
<td>31.19 - 64.61</td>
</tr>
</tbody>
</table>

n = 25 deutan, 6 protan

* p < 0.05 vs. monocular score (Wilcoxon Signed-Rank Test)

** p < .001 vs. monocular score (Wilcoxon Signed-Rank Test)
Findings:
CVD vs. CVN (Monocular)
Findings:
CVD vs. CVN (Binocular)
Findings: Proposed Normative Values

<table>
<thead>
<tr>
<th>Passing Scores</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive Predictive Value</th>
<th>Negative Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monocular (>=75)</td>
<td>1.00</td>
<td>0.99</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>Binocular (>=75)</td>
<td>0.84</td>
<td>1.00</td>
<td>1.00</td>
<td>0.96</td>
</tr>
<tr>
<td>Binocular (>=93)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Limitations

- No blue cone (tritan) or acquired deficiencies included
- Ceiling effect of current test set up for binocular viewing among CVN subjects
 - Not accurately measuring the normal threshold level
- Small sample size of CVD subjects
- This is a preliminary study to look at normative scores under binocular conditions
Discussion

• Color contrast sensitivity is improved with binocular viewing
 • Increased binocular test scores statistically significant for both CVN and CVD subjects
• A binocular normative score of 93 achieves 100% sensitivity and specificity
• Current monocular pass/fail criteria for the CCT not valid for binocular conditions
Discussion

- Advantages for binocular testing
 - Faster testing
 - Reproduces “real world” visual conditions
 - Enables better correlation within operational performance studies

- Disadvantages
 - Potential to miss unilateral/asymmetric CVD (i.e. acquired)
 - Reduced ability to intervene early in acquired ocular disease
 - Cannot apply current validated monocular pass/fail criteria to binocular testing conditions
Recommendations

• Perform further research to correlate CCT binocular score with occupational visual performance

• Reprogram and validate CCT to test binocularly
 • Decrease contrast level to reach threshold for CVNs

• Increase sample size, specifically CVDs
References

3. Picken D, Mann M, Rings M. Preliminary Validation of a computerized color vision test. Naval Aerospace Medical Institute, Pensacola FL.

Questions?
Acquired Color Deficiency

- Acquired blue cone loss occurs early in eye disease

- Making blue cone tests necessary
Acquired Color Deficiency

- Secondary to disease, trauma or toxicity.
- Often unilateral, or asymmetric between eyes.
 - Unstable and variable in course.
 - Red-green or blue-yellow; usually blue-yellow.

Why blue acquired deficiency?

- Very few blue cones...
- Lack of redundancy.
- Small amount of damage has large effect.