Medical Management of a Potentially Toxic Trialkylamine Ingestion during Spaceflight

Rebecca S. Blue, MD, MPH
Joseph C. Hudson, MD
Michael F. Rieders, PhD
John T. James, PhD
Philip C. Stepaniak, MD
I have no financial relationships to disclose.

I will not discuss off-label use and/or investigational use in my presentation.
Introduction

• Need for reduction in excessive iodine consumption by astronauts

• Multiple methods for removal of residual iodine after purification aboard NASA spacecraft

• Low Iodine Residual System (LIRS)
 • developed for iodine removal aboard space shuttle
 • Initially flown on STS-95

• Case report: accidental, potentially toxic ingestion by astronauts
 • exposure to contaminated water from LIRS filtration
Introduction: LIRS

- LIRS: developed as iodine removal system for Shuttle
 - Goal: replace previous iodine removal assemblies already in use

- LIRS specs:
 - Commercially patented resin, Iodosorb II®
 - Reduces iodine concentration (heated OR chilled water)
 - Resultant iodine concentration ≤ 0.25 mg/L
 - Historical water consumption averages: 2 L/day/astronaut
 - Iodine intake approximately 0.5 mg/day
 - Operational requirements: 0.5 mg/day from either water or food sources, maximum 1g iodine intake/day
Introduction: LIRS

• Flight Readiness:
 • Demanding timeline – need for improved systems on board

 • Contamination: 6 weeks prior to scheduled launch, LIRS cartridge found to have significant microbial contamination
 • Recommended that cartridges be sterilized before flight
 • Autoclave known to degrade effectiveness of resin
 • Sterilized with gamma irradiation (25-40 kGy)
Introduction: LIRS

• Irradiated resin sample (not LIRS flight-ready cartridge) sent for safety review
 • LIRS: considered non-critical
 • no threat to crew/mission in case of failure
 • Able to be replaced by prior systems if needed
 • Resin sample found to meet quality specifications
 • Flight-ready cartridge NEVER used for water sampling prior to flight

• LIRS launched aboard STS-95 as scheduled
 • Installed on day 2 of flight
Case Report

- Five of seven crew members consumed LIRS-filtered drinking water beginning flight day 2

- 6 hours after initial ingestion:
 - One crew member complained of malodor, abnormal taste
 - Initially complaints disregarded – “it’s just Shuttle water”
 - Other crew members using flavored drink mix – masking taste
 - Second crew member sampled non-flavored water, similarly noted abnormal odor and taste

- Official report made to Mission Control and to mission flight surgeon
 - Unscheduled private medical conference requested
Case Report

- Second gamma-irradiated flight-certified LIRS unit obtained
 - Ground-based taste test performed
 - Flight surgeon and CAPCOM sampled water
 - Abnormal taste, malodor detected
- Crew immediately advised against consuming further LIRS-filtered water
 - LIRS removed from filtration system
 - Five exposed crew members: estimated to have consumed less than 2 L of the LIRS water
- Water sample from flight-certified ground LIRS unit sent for analysis
Case Report

• Ground unit water sample:
 • Elevated Total Organic Carbon (TOC) level: 1,270 mg/L
 • Elevated tripropylamine (TPA) level: 794 mg/L
 • Elevated tributylamine (TBA) level: 176 mg/L
 • Elevated formaldehyde level: 11.4 mg/L

• Literature review
 • Possible health risk
 • Minimum adverse human dose: undefined
 • SWEG: 0.4mg/L (re: unpleasant odor, potential for decreased water consumption)
Literature Review

• Oral ingestion of trialkylamines:
 • GI mucosal absorption
 • Lipophilic distribution: brain, liver, heart, kidneys

• Liver metabolism:
 • N-oxide and N-nitrosamine compound formation
 • Omega hydroxyl- and carboxy-nitrosamine metabolites
 • Carcinogenic in rodent models
 • ? Carcinogenic in humans
 • Aliphatic side-chain oxidation and glucuronidation.
 • Hepatic/renal elimination
 • Possible injury to either organ system
Case Report

• Medical response:
 • Monitoring of liver enzymes, serum metabolites
 • Blood/urine samples collected on orbit for post-landing examination
 • Concern over the potential mission impact
 • Would the crew be able to perform critical landing operations?
 • Should the crew de-orbit ahead of schedule?
 • Crew medical officer: physician-astronaut
 • Monitored crew members throughout flight
 • No adverse effects reported

• Crew considered capable of completing flight without operational consequence
 • Mission continued uninterrupted
Post-Flight Analysis

- LIRS water:
 - TOC = 8.64 mg/L
 - TBA = 0.204 mg/L
 - TPA = 4.95 mg/L
 - Trace formaldehyde
- Estimated exposure:
 - 14-28 mg over 24 hours
 - 0.2-0.4 mg/kg/day (based on a 70 kg standard patient)
 - Approximately 25-50 times lower than that administered daily to experimental animals with resultant carcinogenic effects
Post-Flight Analysis

• On-orbit blood samples:
 • TPA levels detectable in 9/14 heparinized whole blood samples
 • TBA levels below limit of quantitation (0.5 ng/mL) in all samples

• On-orbit urine samples:
 • Elevated TPA and TBA in all exposed crew member samples
Post-Flight Analysis

• Standard post-flight clinical laboratory assays:
 • Serum:
 • No detectible trialkylamines
 • Significantly increased magnesium levels in all exposed crew members
Post-Flight Analysis

- Elevated liver enzymes in 3/5 exposed crew members
 - 2/5 exposed: elevated AST
 - All normalized by 3d post-flight
 - 1/5 exposed: elevated ALT
 - Further elevation 3d post-flight
 - Normalized by 6 months post-flight
Post-Flight Analysis

• Post-Flight NASA Anomaly Review Board

 • Primary cause: failure to anticipate the chemical breakdown of the resin when exposed to gamma radiation

 • Post-irradiation analysis focused on resin functionality
 • Analysis did NOT focus on whether irradiated resin posed any health or toxicological risk to the crew members
Post-Flight Analysis

• Misclassification of LIRS as non-critical piece of hardware
 • Multiple alternative systems readily available should the LIRS fail
 • BUT: consider possibility of crew injury from exposure

• If hardware classified as mission critical:
 • More thorough examination of all system hardware
 • Toxicological review of potential LIRS resin (rather than parallel testing of the ground-based substitute)
Operational Medical Response

• Primary concern: mission impact with incapacitation at time of landing
 • Identities of the toxicants unknown
 • Unclear whether exposure could cause significant health impacts
 • Potential for inability to perform mission-critical tasks (on-orbit and re-entry)
Operational Medical Response

• Response plan:
 • Daily private medical conferences
 • Any symptoms reviewed
 • Any signs of incapacitation
 • Flight surgeon integration with other ground support operational teams
 • Evaluate crew safety, ability to complete mission
 • Potential need for early de-orbit and return, medical evaluation
 • Crew Medical Officer
 • Physician-astronaut
 • Able to evaluate and monitor crew members, reassure ground teams
Conclusions

• Two significant issues:
 • Acute medical event during spaceflight
 • Required real-time operational medical response from the ground-based crew surgeon and medical team
 • Impact of even seemingly non-critical equipment upon mission success

• Crew members followed in Longitudinal Study of Astronaut Health (LSAH)
 • Annual physicals, life-long surveillance
 • None of the exposed crew members have suffered any adverse events related to the toxicological exposure from the LIRS equipment
Acknowledgements

• National Medical Services, Inc
• American Association of Poison Control Centers

• We would like to acknowledge the assistance of the crew members and the flight controllers involved in this case for their willingness to share these findings with the scientific community