ACCELERATION OF PROCEDURAL LEARNING WITH TRANSCRANIAL DIRECT CURRENT STIMULATION (tDCS)

84th Annual AsMA Meeting – 13 May 2013

R. Andy McKinley
Lindsey McIntire
Justin Nelson
Jeremy Nelson
Chuck Goodyear

Human Effectiveness Directorate
711th Human Performance Wing
Air Force Research Laboratory
I have no financial relationships to disclose.

I will discuss the following off-label use and/or investigational use in my presentation:
Introduction

• Manpower Problem:
 – Some jobs (Image Analysis) must be done by humans
 – Many tasks in the military are procedure based
Non-Invasive Brain Stimulation?

• Began as neurological therapeutic treatment
 - Two Primary Methods:
 • Transcranial Direct Current Stimulation
 • Transcranial Magnetic Stimulation

Healthy Controls – Improved Cognitive Performance
Introduction

Transcranial Direct Current Stimulation

Sham (2 mA, 30 sec) Active (2 mA, 30 min)

Up-modulate neural activity
(decrease membrane potential, increase spontaneous firing)

Down-modulate neural activity
(increase membrane potential, decrease spontaneous firing)

(from Purpura & McMurtry, 1965)
Can we accelerate nondeclarative (skill) learning?

- Previous research – enhancement simple motor procedural learning with motor cortex stimulation (Galea & Celnik, 2009)
- Wanted to examine more complex motor procedural task

Strategy

Enhance motor skill
Excite – Motor Cortex

Depress competing memory
Inhibit – Prefrontal Cortex
Skill Learning

Warship Commander Task

Day 1: Learning (20 minutes)

Day 2: Testing (20 minutes)

<table>
<thead>
<tr>
<th>Skill Acquisition</th>
<th>Anodal - Motor Cortex</th>
<th>Cathodal - Prefrontal Cortex</th>
<th>Anodal - Motor & Cathodal Prefrontal</th>
<th>Sham - Motor & Sham - Prefrontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (n=10)</td>
<td></td>
<td></td>
<td>Group 3 (n=10)</td>
<td>Group 4 (n=10)</td>
</tr>
<tr>
<td>Skill Consolidation</td>
<td>Group 2 (n=10)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Sequence of training and testing blocks with notations for Active and Sham TDCS.

Active Groups

- **Day 1**
 - Baseline: 1 wave, 12 Aircraft, 75 sec
 - Training 1: 3 waves, 12 aircraft/wave, 3 min 45 sec
 - Training 2: 3 waves, 12 aircraft/wave, 3 min 45 sec
 - Training 3: 3 waves, 12 aircraft/wave, 3 min 45 sec
 - Training 4: 3 waves, 12 aircraft/wave, 3 min 45 sec

- **Day 2**
 - Test 1: 3 waves, 12 aircraft/wave, 3 min 45 sec
 - Test 2: 3 waves, 12 aircraft/wave, 3 min 45 sec
 - Test 3: 3 waves, 12 aircraft/wave, 3 min 45 sec
 - Test 4: 3 waves, 12 aircraft/wave, 3 min 45 sec

Sham Group

- **Day 1**
 - Baseline: 1 wave, 12 Aircraft, 75 sec
 - Training 1: 3 waves, 12 aircraft/wave, 3 min 45 sec
 - Training 2: 3 waves, 12 aircraft/wave, 3 min 45 sec
 - Training 3: 3 waves, 12 aircraft/wave, 3 min 45 sec
 - Training 4: 3 waves, 12 aircraft/wave, 3 min 45 sec

- **Day 2**
 - Test 1: 3 waves, 12 aircraft/wave, 3 min 45 sec
 - Test 2: 3 waves, 12 aircraft/wave, 3 min 45 sec
 - Test 3: 3 waves, 12 aircraft/wave, 3 min 45 sec
 - Test 4: 3 waves, 12 aircraft/wave, 3 min 45 sec

Active TDCS: 2 mA for 20 min.
Sham TDCS: 2 mA for 30 sec.
Results
Score

Ave % Change from Baseline in Score

- M
- C
- M+C
- Sham
Results
Correct Button Presses

Average Difference in Correct BP

- M
- C
- M+C
- Sham
Results
Incorrect Button Presses

Ave Change from Baseline

M C M+C Sham
Discussion

• Cathodal over DLPFC immediately following training improves rate of learning
 – Dominance of declarative memory system in complex task
 – C-tDCS shifts dominance to non-declarative system

• Allows better consolidation

• Anodal over motor cortex aids learning in this task during training
 – Improves procedural motor component of task – i.e. clicking buttons
Conclusions

- **TAKE AWAY FINDINGS:**
 - Either excitation of the motor cortex during training or inhibition of the prefrontal cortex during consolidation lead to an acceleration of procedural learning.
 - Although not significant, it appears that a combination of the two stimulation paradigms may lead to greater improvements than one technique alone.

- **FOR FUTURE RESEARCH:**
 - Investigate effects of tDCS over multiple days. Determine whether additive effects exist
 - Determine duration of improvement - test one week and two weeks following training
Questions?

R. Andy McKinley, Ph.D.
Richard.McKinley2@wpafb.af.mil
-or-
Andy.McKinley@wpafb.af.mil
937-938-3598