Decompression Sickness (DCS) Below 18,000 Feet: A Large Case Series

William P. Butler, MD, MTM&H, FACS
James T. Webb, PhD
Disclosure Information

84nd Annual Scientific Meeting
Col William P. Butler

I have no financial relationships to disclose.

I will not discuss off-label use and/or investigational use in my presentation.

The opinions expressed are mine only and do not represent DoD or Air Force positions.
Methods

• Source Material
 – Literature 84 cases
 – Unpublished 20 cases
 • Davis Hyperbaric Laboratory 7 cases
 – TOTAL 111 cases

• Descriptive Analysis
Results

• Source of Exposure
 – Aircraft = 39
 – Chamber = 69
 – Parachute = 3

• Mean Age = 26 (aircraft = 30 & chamber = 24)

• Gender
 – Male = 80
 – Female = 13
 – Unknown = 18
Results

[Bar chart showing cases of DCS at various exposure altitudes, differentiated by types I and II and cases of unknown.]
Results

• DCS
 – Type I = 74 (joint*, skin)
 – Type II = 20 (eye, chokes, neurologic)
 – Unknown = 17

• Therapy
 – GLO = 8
 – TT5 = 5
 – TT6 = 24
 – TT8 = 2 (USAF experimental table → 33 ft)
 – None = 50 (1940s = 41; 1960s-1980s = 9)
 – Unknown = 21
Results

• Residual
 – Joint pain = 3 (knee, shoulder)
 – Neurologic = 2 (tingling, numbness)

• Recurrence
 – Joint pain = 1 (knee)
 – Neurologic = 1 (ulnar nerve)

• Tailing Treatments (6)

• Treatment Complications (2)
Results

• Risk Factors
 – No prebreathe (n = 101, 95%)
 – Exercise (n = 103, 76%)
 • AFRL Altitude Research Database, p < 0.05
 – Prior exposures (n = 91, 74%)
 – Duration at altitude (n = 88)
 • Range = 5 - 414 minutes
 • Mean time to symptoms = 83 minutes
Implications of Case Series-1

- Low Altitude DCS may not be uncommon
- Anecdotal cases routinely discussed
- Bubble Data
 - Webb & Pilmanis
 - Olson & Krutz
- Case Series
ADRAC Model of DCS Risk
18,000 Ft --- No Prebreathe

Pilmanis et al; ASEM; 2004;75:749-759
Incidence of Low Altitude DCS

- Houston (1947) \(\rightarrow \) \(\frac{2}{387} = 0.5\% \) \((6/387 = 1.6\%) \)
- Smedal (1948)
 - 5,000 ft \(\rightarrow \) \(\frac{6}{240} = 2.5\% \)
 - 6,000 ft \(\rightarrow \) \(\frac{4}{22} = 18.2\% \)
 - 10,000 ft \(\rightarrow \) \(\frac{23}{71} = 32.4\% \)
- Smead (1986) \(\rightarrow \) \(\frac{1}{31} = 3.2\% \) \((15,000 \text{ ft}) \)
- Dixon (1986) \(\rightarrow \) \(\frac{1}{88} = 1.1\% \) \((16,500 \text{ ft}) \)
- AFRL database \(\rightarrow \) \(\frac{7}{424} = 1.7\% \) \((16,500 \text{ ft})^* \)
Implications of Case Series-1

• Bubbles form below 18,000 feet
 – Bubbles evolve and grow below 18,000 feet
 – VGE and DCS may not be rare

• Issue
 – Cannot discount symptoms and DCS
 – Definitive treatment indicated (may need HBO)
Implications of Case Series-2

• Operational Air Force
 – U-2 operates up to 29,500 ft (soon to 15,000 ft)
 – AC-130 operates unpressurized to 18,000 ft
 – CV-22 operates unpressurized to 20,000 ft
 – Training chambers operate up to 25,000 ft

• Issue
 – Cannot discount VGE effects and DCS
 – Altered/aborted missions & long term health impacts
 – New Research
 • Microparticles (MPs) --- encapsulated membrane fragments (Thom et al)
 • White Matter Hyperintensities (WMHs) --- rMRI (Jersey et al; McGuire et al)
 – **Future**: pre/post-flight HBO for high decompression stress missions
 • Denucleates, denitrogenates, counters MPs & WBCs (Arieli et al; Thom et al)
Implications of Case Series-3

• Aeromedical Evacuation flies ≤ 8,000 ft
 – VGE in normals = 28% (AFRL Database ≥ 10,250 ft)
 – Patients are not normals
 • Altered perfusion
 • Turbulent flow
 • Anesthetic gases
 • Transfusions infuse bubbles (macro)
 – Warming releases dissolved gas (85% inert)
 • Transfusions introduce MPs (Pritts et al*, Thom et al)
 – Proinflammatory (WBC activation with vascular/lung injury)
 – Abated with recompression (may have a gas component)
Implications of Case Series-3

• Aeromedical Evacuation flies ≤ 8,000 ft
 – VGE, warmed blood gas evolution, and MPs

• Issue
 – Cannot discount “second hit” during AE
 – Cabin altitude restriction a cogent countermeasure
 – **Future:** pre/post-flight HBO (?? USAF TT8 ??)
 • Compresses bubbles, oxygenates, counters MPs & WBCs
 (Thom et al; Arieli et al)
Conclusion

- Low Altitude DCS exists
 - May be more frequent than thought
 - Treat like any altitude DCS
 - May be operationally relevant
 - VGE, MPs, WMHs
 - May be very relevant to AE
 - VGE, transfusion bubbles, MPs
 - “Second hits” and post-flight complications and CARs
- FUTURE: pre/post-flight HBO
Questions

--- Thank you very much
References

8. Manton A. Three incidents of decompression illness at the RAF Centre of Aviation Medicine. Aerospace Medical Association Annual Scientific Meeting; Atlanta, GA; 13-17 May 2012.
17. AFRL Altitude Research Database