Pathophysiology, Prevention, and Treatment of Ebullism

Rebecca S. Blue, MD, MPH
Daniel H. Murray, MD, MPH
Andrew A. Pilmanis, PhD
James M. Pattarini, MD

Jennifer Law, MD, MPH
C. Gresham Bayne, MD
Matthew W. Turney, MD
Jonathan B. Clark, MD, MPH
I have no financial relationships to disclose.

I will discuss the following off-label use and/or investigational use in my presentation:

• High-Flow Percussive Ventilation for ebullism-related pulmonary injury
Introduction

• **Ebullism**

 – Effervescent evaporation of body fluids at barometric pressure equal to or below the saturated vapor pressure at body temperature

 – Vapor pressure of water at 37°C = 47mmHg

 • Equivalent to 63,000ft (19,202m) altitude
Introduction

• Full pressure suits required for flight above 50,000ft (15,240m) – hypoxia and ebullism protection
 – Initially partial pressure suits used in pressurized capsule; replaced by full pressure garments
Human Exposures

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940s</td>
<td>Dr. Jim Henry places hand in vacuum glove box</td>
</tr>
<tr>
<td>1960s</td>
<td>Captain Joe Kittinger lost right glove pressure on Excelsior III</td>
</tr>
<tr>
<td>1966</td>
<td>NASA vacuum chamber subject exposed to 120,000ft (36,576m) when umbilical disconnected</td>
</tr>
<tr>
<td>1968</td>
<td>F-104 flight; pressure suit from glove came off (fatal aircraft crash)</td>
</tr>
<tr>
<td>1971</td>
<td>Soyuz 11 crew died from capsule pressure leak</td>
</tr>
<tr>
<td>1981</td>
<td>Industrial accident in vacuum chamber</td>
</tr>
<tr>
<td>2003</td>
<td>STS-107 Columbia crew exposed to vacuum during vehicle breakup</td>
</tr>
</tbody>
</table>
Methods

• Literature review
 – Human/animal studies – rapid decompression to vacuum
 – Medline, Web of Science, Scopus, Google Scholar, National Technical Information Service
 • Retrieved 2 documents
 – Search expanded to manual search of available periodicals at medical libraries, military archives
 • Retrieved 12 documents
 – Author first-hand knowledge, unpublished experimentation – most performed >30y ago
Results

• Predictable injury by organ system
 – Cardiovascular: vapor lock
 – Respiratory: emphysematous changes, alveolar destruction, atelectasis, edema, barotrauma
 – GI/GU: projectile emesis/defecation/urination, organ hemorrhage
 – Nervous: LOC, spinal cord hemorrhage, bubble infarctions
 – Body Cavities: barotrauma
 – Fluid Evaporation: hypothermia, dehydration, tissue freezing
Sequence of Ebullism

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0 sec</td>
<td>Anxiety, agitation</td>
</tr>
<tr>
<td></td>
<td>Abdominal distension</td>
</tr>
<tr>
<td>+10 sec</td>
<td>Loss of consciousness</td>
</tr>
<tr>
<td></td>
<td>Circulatory vapor lock</td>
</tr>
<tr>
<td>+30 sec</td>
<td>Seizure/paralysis</td>
</tr>
<tr>
<td></td>
<td>Vapothorax</td>
</tr>
<tr>
<td></td>
<td>Vapoperitoneum</td>
</tr>
<tr>
<td></td>
<td>Hypothermia</td>
</tr>
<tr>
<td></td>
<td>Dysrhythmia</td>
</tr>
<tr>
<td>+4 min</td>
<td>Irreversible brain injury</td>
</tr>
<tr>
<td></td>
<td>Death</td>
</tr>
</tbody>
</table>
Factors Influencing Morbidity and Mortality

<table>
<thead>
<tr>
<th>Factor</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anoxia</td>
<td><90 sec survival in animal models</td>
</tr>
<tr>
<td></td>
<td>Death within 5 min if uncorrected</td>
</tr>
<tr>
<td>Bubbles, Trapped Gas</td>
<td>Absolute/relative pressure change</td>
</tr>
<tr>
<td></td>
<td>Rate of pressure change</td>
</tr>
<tr>
<td></td>
<td>Altitude</td>
</tr>
<tr>
<td></td>
<td>Prebreathe/Denitrogenation</td>
</tr>
<tr>
<td></td>
<td>Atmospheric components</td>
</tr>
<tr>
<td>Fluid loss</td>
<td>Hypothermia</td>
</tr>
</tbody>
</table>
High-Frequency Percussive Ventilation

• Commonly used for ARDS
 – Improves oxygenation without increasing lung damage
 – Damage to ebullized lungs similar to ARDS

• Provides oxygenation at low pressures
 – Damaged lung tissue: considerably decreased compliance
 – Must guard against providing too much peak and expiratory pressure during ventilation
 – Must guard against inadvertent circuit break (no visible chest rise)
Decompression above 63,000 feet

Pre-Landing
- Ensure immediate transport is available
- Prep for RSI, high-frequency percussive ventilation
- Obtain exposure characteristics

Upon Landing
- Breach suit for access if applicable
- Give 100% O₂ by face mask
- Maintain stable C-spine as appropriate

Conscious? Yes

Talk test? Good

No

Pulse? Yes

Evidence of tension PTX?

No

Adequate ventilation?

No

- Check/adjust equipment
- Reassess

Yes

Needle thoracostomy

- Continue 100% O₂
- Monitor*
- Frequent assessment
- Transport as necessary

- Ensure IV access (fluids TKO)
- Treat other injuries
- Conduct secondary assessment
- Continue transport and monitoring
- Be aware of hypothermia

* Monitoring to include:
 Vital signs
 Cardiac monitoring
 SpO₂
 End-tidal CO₂
 Temperature
Discussion

• Research (human/animal) extremely limited
• Protocol put into place but untested
• Literature suggest survival is possible
 – Animals: 90-120 second exposures survivable
 – Humans: survival based on exposure duration, but likely can withstand more than animals
 • JSC Vacuum Chamber test, industrial vacuum chamber accident
Discussion

• Lung damage primary factor in survival
 – Use of HFPV can oxygenate through damaged tissues, allows time for recovery of other insults

• Prebreathing oxygen improves survival
 – Denitrogenation reduces incidence and severity of lung damage

• Rate of decompression/recompression factors into survival
The medical team acknowledges the invaluable contribution to the spaceflight scientific community that Felix Baumgartner is making by releasing his data obtained throughout the Red Bull Stratos Project.

The authors also acknowledge the invaluable support of the following:

- Red Bull N.A
- The Red Bull Stratos team
- Col Joe Kittinger, USAF (ret)
- Art Thompson and the Sage Cheshire Aerospace Team
- Jim Bagian, MD
- University of Texas Medical Branch
- Baylor College of Medicine
- Jeffrey Sutton, MD, PhD
- National Space Biomedical Research Institute through the NASA cooperative agreement NCC 9-58
- Space Medicine Clinical Research Training Program